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Data Streams

• A data stream is a (massive) sequence of data
– Too large to store (on disk, memory, cache, etc.)

• Examples:
– Network traffic (source/destination)
– Sensor networks
– Satellite data feed, etc.

• Approaches:
– Ignore it
– Develop algorithms for dealing with such data
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Plan For This Lecture

• Introduce the data stream model(s)
• Basic algorithms

– Estimating number of distinct elements in a 
stream

– Frequency moments and norms
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Basic Data Stream Model

• Single pass over the data: i1, i2,…,in
– Typically, we assume n is known

• Bounded storage (typically nα or logc n)
– Units of storage: bits, words or „elements”

(e.g., points, nodes/edges) 
• Fast processing time per element

– Randomness OK (in fact, almost always necessary)

8 2 1 9 1 9 2 4 6 3 9 4 2 3 4 2 3 8 5 2 5 6  ...
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Example: Counting Distinct 
Elements

• Stream elements: numbers from {1...m} 
• Goal: estimate the number of distinct elements DE in 

the stream
– Up to 1±ε
– With probability  1-P

• Simpler goal: for a given T>0, provide an algorithm 
which, with probability 1-P:
– Answers YES, if DE> (1+ε)T
– Answers NO, if DE< (1-ε)T

• Run, in parallel, the algorithm with 
T=1, 1+ε, (1+ε)2,..., n

– Total space multiplied by log1+εn ≈ log(n)/ ε
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Vector Interpretation

• Initially, x=0
• Insertion of i is interpreted as 

xi = xi +1
• Want to estimate DE(x)

Stream: 8 2 1 9 1 9 2 4 4 9 4 2 5 4 2 5 8 5 2 5 

Vector X: 
1  2  3  4  5  6  7  8  9 
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Estimating DE(x)

• Choose a random set S of coordinates
– For each i, we have Pr[i∈S]=1/T

• Maintain SumS(x) = Σi∈S xi
• Estimation algorithm A:

– YES, if SumS(x)>0
– NO, if SumS(x)=0

• Analysis:
– Pr=Pr[SumS(x)=0] = (1-1/T)DE

– Using calculus (for T, 1/ε large enough):
• If DE> (1+ε)T, then Pr<1/e - ε/3
• if DE< (1-ε)T,  then Pr>1/e + ε/3

Vector X: 
1  2  3  4  5  6  7  8  9 
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Estimating DE(x) ctd.
• We have Algorithm A:

– If DE> (1+ε)T, then Pr<1/e-ε/3
– if DE< (1-ε)T,  then Pr>1/e+ε/3

• Algorithm B:
– Select sets S1 … Sk , k=O(log(1/P)/ε2)
– Let Z = number of SumSj(x) that are equal to 0
– By Chernoff bound (define), with probability >1-P

• If DE> (1+ε)T, then Z<k/e
• if DE< (1-ε)T,  then Z>k/e

• Total space: O(log(n)/ε log (1/P)/ε2 ) numbers 
in range 0…n

• Homework: remove the 1/ε factor
[Flajolet-Martin’85]
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Interlude – Chernoff bound

• Let Z1…Zk be i.i.d. Bernoulli variables, with 
Pr[Zj=1]=p

• Let Z=∑j Zj

• For any 1>ε>0, we have
Pr[ |E[Z]-Z| > εE[Z] ]≤2exp( -ε2E[Z]/3 )
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Comments

• Implementing S:
– Choose a hash function h: {1..m} -> {1..T}
– Define S={i: h(i)=1}

• Implementing h
– Pseudorandom generators

• Better algorithms known:
– Theory: O( log(1/ε)/ε2 +log n) bits

[Bar-Yossef-Jayram-Kumar-Sivakumar-Trevisan’02]

– Practice: need 128 bytes for all works of 
Shakespeare , ε≈10% [Durand-Flajolet’03]
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More comments

• The algorithm uses “linear sketches”
SumSj(x)=Σi∈Sj xi

• Can implement decrements xi=xi-1
– I.e., the stream can contain deletions of elements 

(as long as x≥0)
– Other names: dynamic model, turnstile model

Vector X: 
1  2  3  4  5  6  7  8  9 
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• What other functions of a vector x can we maintain in small space ?
• Lp norms: 

||x||p = ( ∑i |xi|p )1/p

– We also have ||x||∞ =maxi |xi|
– … and ||x||0 = DE(x), since ||x||p

p =∑i |xi|p→DE(x) as p→0

• How much space do you need to estimate ||x||p (for const. ε) ?
• Theorem:

– For p∈[0,2]: polylog n space suffices
– For p>2: n1-2/p polylog n space suffices and is necessary

[Alon-Matias-Szegedy’96, Feigenbaum-Kannan-Strauss-Viswanathan’99, 
Indyk’00, Coppersmith-Kumar’04, Ganguly’04,  Bar-Yossef-Jayram-
Kumar-Sivakumar’02’03, Saks-Sun’03, Indyk-Woodruff’05] 

More General Problem

2
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Interlude: Normal Distribution

• Normal distribution:
– Range: (-∞, ∞)
– Density: f(x)=e-x^2/2 / (2π)1/2

– Mean=0, Variance=1
• Basic facts:

– If X and Y independent r.v. with normal distribution, 
then X+Y has normal distribution

– Var(cX)=c2 Var(X)
– If X,Y independent, then Var(X+Y)=Var(X)+Var(Y)
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Sketching
• We will use a linear sketch Ax, where A is a k*n matrix

– Increments/decrements come “for free”
– k=Clog(1/P)/ε2

• Each entry of A has normal distribution
• Ai is a row of A
• What can we say about Ax ?
• Consider (Ax)i=Ai *x = a*x=∑i ai xi
• Each term ai xi

– Has normal distribution
– With variance xi

2

• Thus, (Ax)i has normal distribution, 
with variance ∑i xi 

2=||x||22
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Estimation - intuition
• From previous slide: (Ax)i has normal distribution, 

with variance ∑i xi 
2=||x||22

• Consider a random variable
Z=median[ |(Ax)1|, … , |(Ax)k|] 

• Intuitively, for large enough k, Z should be “close” to the 
median* of ||x||2 |a|, where a has normal distribution

• Then we could use an estimator
E=Z/median (a)

*M is the median of a random var a if Pr[a>M]=1/2
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Formally
• Lemma 1: Let Z1 … Zk be i.i.d. real random variables chosen from  

any distribution having continuous c.d.f. F and median M
– I.e., F(t)=Pr[Zi <t] and F(M)=1/2

Define Z=median[Z1,…,Zk]. Then, for some absolute const. C

Pr[F(Z)∈(1/2-ε,1/2-ε)]≥1-e-Cε2k

• Proof: 
– Consider events Ei: F(Zi)<1/2-ε
– We have p=Pr[Ei]=1/2-ε
– By Chernoff bound, the probability that at least k/2 of these events hold 

is at most e-Cε2k

– If less than k/2 of these events hold, then F(Z)≥ 1/2-ε
– Therefore, Pr[F(Z)< 1/2-ε] is at most e-Cε2k

– The other case can be dealt with in an analogous manner

MADALGO, August 20, 9:00

Formally, ctd.
• Lemma 2: Let F be c.d.f of a 

random variable ||x||2|a|, a 
normal.
If for some z we have

F(z)∈(1/2-ε,1/2-ε)
then, for some abs. const. C’
z = ||x||2 [median(a) ± C’ ε]

• Proof: Use calculus.
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Johnson-Lindenstrauss Lemma

• We used an estimator 
Z=median[ |(Ax)1|, … , |(Ax)k|]/Scale

• Instead, we could have used
Z=[ |(Ax)1|2 + … +|(Ax)k|2 ]1/2 /Scale

• Johnson-Lindenstrauss: the latter 
estimator works

• Proof similar to the proof of the Chernoff
bound
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Recap

• Total space: O(log (1/P)/ε2 ) real numbers
– Not including the random bits

• Can discretize the numbers so that they 
have O(log n) bits of precision

• In fact, a very similar algorithm works if 
the entries of A are Bernoulli random 
variables [Alon-Matias-Szegedy’96]
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Other norms
• Key property of normal distribution: if X, Y, Z

independent, then 
aX+bY is distributed as (a2+b2)1/2Z

• This is possible to achieve for 2 replaced by  
any p∈(0,2] using “p-stable distributions”

• The median estimator and the proofs  go 
through, albeit the constant C’ (previous slide) 
depends on p in an unclear way

• Geometric mean estimator [Li’06] gives an 
explicit dependence on p
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Summary

• Streaming model
– Insertions-only vs. insertions+deletions

• Maintaining Lp norm under updates
– Polylogarithmic space for p≤2


